ANÁLISE DO BIOGRAN E BIO-OSS EM SEIOS MAXILARES DE HUMANOS: ESTUDO CLÍNICO, PROSPECTIVO E HISTOMORFOMÉTRICO

Autores

  • Rodrigo dos Santos Pereira Centro universitário Serra dos Órgãos - UNIFESO

Palavras-chave:

Seio maxilar, Substitutos ósseos, Implantes dentários

Resumo

Introdução: A reabilitação de pacientes edêntulos em região posterior da maxila apresentou-se, por muito tempo, como um desafio aos cirurgiões dentistas. A deficiência óssea vertical proveniente da pneumatização do seio maxilar impossibilita a instalação de implantes dentais necessários para a reabilitação protética. Técnicas cirúrgicas para a elevação da membrana sinusal e biomateriais para enxertia óssea permitiram que essa deficiência pudesse ser reparada. Dentre os materiais utilizados para este fim destaca-se, até a atualidade, o enxerto ósseo autógeno pois é considerado o mais previsível e, o padrão ouro nas reconstruções maxilofaciais. Por demandar de um outro procedimento cirúrgico para sua coleta, biomateriais como a hidroxiapatita derivada de cortical óssea bovina e o vidro bioativo tem sido amplamente utilizada como substitutos ósseos em seios maxilares. Contudo, estudos comparando esses substitutos ósseos ainda são escassos na literatura o que poderia ajudar a elucidar dúvidas do cirurgião dentista na clínica diária.

Objetivo: Este estudo se justifica pelo objetivo de avaliar, prospectivamente, o comportamento e a dinâmica do reparo ósseo do Biogran, adicionado ou não ao osso autógeno no seio maxilar de humanos comparando-o com o Bio-Oss, Bio-Oss adicionado ao osso autógeno e o osso autógeno puro. Para isso, após 6 meses de reparo ósseo, a neoformação óssea.

Resultados: A taxa de neoformação em percentual para o grupo 1 (Biogran®) foi de 43% em região de leito, 35% para região intermediária e 48% para região apical. Para o grupo 2 (Biogran® + Osso autógeno) a taxa de neoformação foi de 39%, 35% e 37% de osso neoformado para leito, intermediário e apical respectivamente. Para o grupo 3 (Bio-Oss®) houve 33%, 33% e 34% de neoformação nas regiões de leito, intermediário e apical. No grupo 4 (Bio-Oss® + Osso autógeno) em leito formou 36%, intermediário 38% e em apical 30%. No grupo 5 (Osso autógeno – controle) houve 39% de osso no leito, 39% na intermediaria e 32% na apical. Não houve diferença estatística para neoformação óssea nos grupos estudados e nem entre as regiões avaliadas (p<0,05).

Conclusão: Com o presente estudo conclui-se que todos os biomateriais estudados possuem características histomorfométricas semelhantes, provando serem ótimos substitutos ao osso autógeno, independente de estarem em sua forma pura ou associados ao mesmo.

Referências

ABDULKARIM, H. H. et al. Short-Term Evaluation of Bioactive Glass Using the Modified Osteotome Sinus Elevation Technique. Implant Dentistry., v. 22, n. 5, p.491-498, Oct. 2013.

BRUNSKI, J. B.; PULEO, D.A.; NANCI, A. Biomaterials and biomechanics of oral and maxillofacial implants: current status and future developments. J. Oral Maxillofac. Implants., v.15, n. 1, p. 15-46, Jan./Fev. 2000.

BLOCK, M. S.; KENT, J. N. Sinus augmentation for dental implants: the use of autogenous bone.

J Oral Maxillofac Surg., v. 55, n. 11, p. 1281-1286. Nov. 1997.

BLOCK, M. S. et al. Bone maintenance 5 to 10 years after sinus grafting.

J. Oral Maxillofac.Surg., v. 56, n. 6, p. 706-714. Jun. 1998.

BOYNE, P. J.; JAMES, R. A.Grafting of the maxillary sinus floor with autogenous marrow and bone. J Oral Surg., v. 38, n. 8, p. 613. Aug. 1980.

CAPELLI, M. Autogenous bone graft from the mandibular ramus: a technique for bone augmentation. J Periodontics Restorative Dent., v. 23, n. 3, p. 277-285. Jun. 2003.

CAUBET, J. Gene expression and morphometric parameters of human bone biopsies after maxillary sinus floor elevation with autologous bone combined with Bio-Oss® or BoneCeramic®. Clin Oral Implants Res. v. 26, n. 26, p. 727-735. Jun. 2015.

CHAPPARD, D. et al. Sinus lift augmentation and beta-TCP: A microCT and histologic analysis on human bone biopsies. Micron., v. 41, n. 4, p. 321-326. Jun. 2010.

CLOZZA, E. et al. Healing of fresh extraction sockets filled with bioactive glass particles: histological findings in humans. Clin Implant Dent Relat Res., v. 16, n. 1, p. 145-153. Feb. 2014.

CORDIOLI, G. et al. Maxillary sinus floor augmentation using bioactive glass granules and autogenous bone with simultaneous implant placement - Clinical and histological findings.Clin Oral Implants Res., v. 12, n. 3, p. 270-278. Jun. 2001.

COSSO, M. G. et al.Volumetric dimensional changes of autogenous bone and the mixture of hydroxyapatite and autogenous bone graft in humans maxillary sinus augmentation. A multislice tomographic study. Clin Oral Implants Res., v. 25, v. 11, p. 1251-1256. Nov. 2014.

DE SOUZA, N. L. S. Immunoexpression of Cbfa-1/Runx2 and VEGF in sinus lift procedures using bone substitutes in rabbits. Clin Oral Implants. v. 21, n. 6, p. 584-590. May. 2010.

DE SOUZA, N. L. S. et al. Use of bovine hydroxyapatite with or without biomembrane in sinus lift in rabbits: histopathologic analysis and immune expression of core binding factor 1 and vascular endothelium growth factor. J Oral Maxillofac Surg. v.69, n. 4, p. 1064-1069. Apr. 2011.

DINATO, T. R. et al. Marginal Bone Loss in Implants Placed in the Maxillary Sinus Grafted With Anorganic Bovine Bone: A Prospective Clinical and Radiographic Study. J Periodontol., v.87, n. 8, p. 880-887. Aug. 2016.

DYBVIK. et al. Bioactive ceramic filler in the treatment of severe osseous defects: 12-month results. Journal of Periodontology., v. 78, n. 3, p. 403-410. 2007.

FROUM, S. J.; WEINBERG, M. A.; TARNOW, D. Comparison of bioactive glass synthetic bone graft particles and open debridement in the treatment of human periodontal defects. A clinical study. J Periodontol., v.69, n.6, p. 698-709. Jun. 1998.

FURUSAWA, T. M. K. Osteoconductive properties and efficacy of resorbable bioactive glass as a bone-grafting material. Implant Dent., v. 6, n. 2, p. 93-101. Summer. 1997.

GALINDO-MORENO, P. et al. Optimal microvessel density from composite graft of autogenous maxillary cortical bone and anorganic bovine bone in sinus augmentation: influence of clinical variables. Clin Oral Implants Res., v. 21, n. 2, p. 221-227. Feb. 2010.

GATTI, A. M.; VALDRE, G.; ANDERSSON, O. H.Analysis of the in vivo reactions of a bioactive glass in soft and hard tissue. Biomaterials., v. 15, n. 3, p. 208-212. Feb. 1994.

GORLA, L. F. et al. Use of autogenous bone and beta-tricalcium phosphate in maxillary sinus lifting: a prospective, randomized, volumetric computed tomography study. J Oral MaxillofacSurg., v. 44, n. 12, p. 1486-1491. Dec. 2015.

GREENSPAN, D. C. Bioactive ceramic implant materials. Current Opinion inSolid State & Materials Science., v.4, n.4, p. 389-393. August.1999.

HENCH, L. L; ANN, N. Y. Bioactive ceramics. Acad Sci., v. 523, n. 8, p. 54-71. 1988.

HIRSCH, J. M.; ERICSSON, I. Maxillary sinus augmentation using mandibular bone grafts and simultaneous installation of implants. A surgical technique. Clin Oral Implants Res., v.2, n. 2, p. 91-96. Apr/Jun. 1991.

JONES, J. R. Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia., v. 9, n. 1, p. 4457-4486. January. 2013.

KLONGNOI. B. et al. Influence of platelet-rich plasma on a bioglass and autogenous bone in

sinus augmentation. An explorative study. Clin Oral Implants Res. v. 17, n. 3, p. 312-320. Jun. 2006.

KINGSMILL, V. J.; BOYDE, A; JONES, S. J. The resorption of vital and

devitalized bone in vitro: significance for bone grafts. Calcif Tissue Int., v. 64, n. 3, p. 252-256. Mar. 1999.

KINNUNEN, I. et al. Reconstruction of orbital floor fractures using bioactive glass. J Cranio Maxillafac Surg., v.28, n. 4, p. 229-234. Aug. 2000.

KIRKER-HEAD, C. A. et al,. A new animal model for maxillary sinus floor augmentation: evaluation parameters. J Oral Maxillofac Implants., v. 12, n. 3, p. 403-411. May/Jun. 1997.

LOW, S. B.; KING, C. J.; KRIEGER, J. An evaluation of bioactive ceramic in the treatment of periodontal osseous defects. J Periodontics Restorative Dent., v. 17, n. 4, p. 358-367. 1997.

MIYAMOTO, S. et al. Histomorphometric and immunohistochemical analysis of human maxillary sinus-floor augmentation using porous β-tricalcium phosphate for dental implant treatment.

Clin Oral Implants Res. v. 24, n.100, p. 134-138. Aug. 2013.

MISCH, C. E. Maxillary sinus augmentation for endosteal implants: organized alternative treatment plans. J Oral Implantol., v. 4, n. 2, p. 49-58. 1987.

MISCH, C. M. Comparison of intraoral donor sites for onlay grafting prior to implant placement. J Oral Maxillofac Implants., v. 12, n. 6, p. 767-776. 1997.

MOON, K. N. et al. Evaluation of bone formation after grafting with deproteinized bovine bone and mineralized allogenic bone. Implant Dent., v. 24, n. 1, p. 101-105. Fev. 2015.

MOY, P. K.; S. LUNDGREN, S.; HOLMES, R. E. Maxillary Sinus Augmentation -Histomorphometric Analysis of Graft Materials for Maxillary Sinus Floor Augmentation. J Cranio Maxillafac Surg., v. 51, n. 8, p. 857-862. 1993.

NEAMAT, A.; GAWISH, A.; GAMAL-ELDEEN, A. M. beta-Tricalcium phosphate promotes cell proliferation, osteogenesis and bone regeneration in intrabony defects in Dogs. Arch Oral Biol., v. 54, n. 12, p. 1083-1090. 2009.

NEVINS ML, C. M. et al. Human histologic evaluation of bioactive ceramic in the treatment of periodontal osseous defects. J Periodontics Restorative Dent., v. 20, n. 5, p. 458-467. Oct. 2000.

NOIA, C. F. et al. Prospective clinical assessment of morbidity after chin bone harvest. J Craniofac Surg., v. 22, n. 6, p. 2195-2198. Nov. 2011.

PEREIRA, R. S. et al. Histomorphometric and immunohistochemical assessment of RUNX2 and VEGF of Biogran and autogenous bone graft in human maxillary sinus bone augmentation: A prospective and randomized study. Clin Implant Dent Relat Res., v. 19, n. 5, p. 867-875. Jun. 2017. a.

PEREIRA, R. S. et al. Use of autogenous bone and beta-tricalcium phosphate in maxillary sinus lifting: histomorphometric study and immunohistochemical assessment of RUNX2 and VEGF. J Oral Maxillofac Surg., v. 46, n. 4, p. 503-510. Jun. 2017.b.

RAGHOEBAR, G. M. et al. Augmentation of the maxillary sinus floor with autogenous bone for the placement of endosseous implants: a preliminary report. J Oral Maxillofac Surg., v. 51, n. 11, p. 1198-1203. Nov. 1993.

RICKERT, D. et al. Maxillary sinus lift with solely autogenous bone compared to a combination of autogenous boneand growth factors or (solely) bone substitutes. A systematic review. J Oral Maxillofac Surg., v. 41, n. 2, p. 160-167. Fev. 2012.

RICKERT, D. et al. Maxillary sinus floor elevation surgery with BioOss® mixed with a bone marrow concentrate or autogenous bone: test of principle on implant survival and clinical performance. J Oral Maxillofac Surg. v. 43, n. 2, p. 243-247. Feb. 2014.

SCHEPERS, E. J; DUCHEYNE, P. Bioactive glass particles of narrow size range for the treatment of oral bone defects: a 1-24 month experiment with several materials and particle sizes and size ranges. J Oral Rehabil., v. 24, n. 3, p. 171-181. Mar. 1997.

SOMANATHAN, R. V; SIMŮNEK, A. Evaluation of the success of beta-tricalciumphosphate and deproteinized bovine bone in maxillary sinus augmentation using histomorphometry: a review. Acta Medica (Hradec Kralove)., v. 49, n. 2, p. 87-89. 2006.

SMILER, D. G. et al. Sinus lift grafts and endosseous implants. Treatment of the atrophic posterior maxilla. Dent Clin North Am., v. 36, n. 1, p. 151-186. Jan. 1992.

SUZUKI, K. R. et al. Long-term histopathologic evaluation of bioactive glass and human-derived graft materials in Macaca fascicularis mandibular ridge reconstruction. Implant Dent., v. 20, n. 4, p. 318-322. Aug. 2011.

TADJOEDIN, E. S. et al. Histological observations on biopsies harvested following sinus floor elevation using a bioactive glass material of narrow size range. Clinical Oral Implants Research., v. 11, n. 4, p. 334-344. Aug. 2000.

TADJOEDIN, E. S. et al. High concentrations of bioactive glass material (BioGran) vs. autogenous bone for sinus floor elevation. Clin Oral Implants Res., v. 13, n. 4, p. 428-436. Aug. 2002.

TATUM, H. J. Maxillary and sinus implant reconstructions. Dent Clin North Am., v. 30, n. 2, p. 207-229. Apr. 1986.

THRONDSON, R.R; SEXTON, S.B. Grafting mandibular third molar extraction sites: a comparison of bioactive glass to a nongrafted site. Oral Surg Oral Med Oral Pathol Oral Radiol Endod., v. 94, n. 5, p. 413-419. Oct. 2002.

TRAINI, T. et al. Histologic and elemental microanalytical study of anorganic bovine bone substitution following sinus floor augmentation in humans. J Periodontol., v. 79, n. 7, p. 1232-1240. Jul. 2008.

TURUNEN, T. Bioactive glass granules as a bone adjunctive material in maxillary sinus floor augmentation. Clin Oral Implants Res., v. 15, n. 2, p. 135-141. Apr. 2004.

WHEELER, S.L. Sinus augmentation for dental implants: The use of alloplastic materials. J Oral Maxillofac Surg., v. 55, n. 11, p. 1287-1293. Nov. 1997.

WOOD, R.M; MOORE, D.L. Grafting of the maxillary sinus with intraorally harvested autogenous bone prior to implant placement. J Oral Maxillofac Implants., v. 3, n. 3, p. 209-214. 1988.

YILDIRIM, M. Maxillary sinus augmentation with the xenograft Bio-Oss and autogenous intraoral bone for qualitative improvement of the implant site: A histologic and histomorphometric clinical study in humans. J Oral Maxillofac Implants., v. 16. n. 1. p. 23-33. Jan/Fev. 2001.

ZERBO, I. R. et al. Localisation of osteogenic and osteoclastic cells in porous beta-tricalcium phosphate particles used for human maxillary sinus floor elevation. Biomaterials. v. 26, n. 12, p. 1445-1451. Apr. 2005.

ZIJDERVELD, S.A. Maxillary sinus floor augmentation using a beta-tricalcium phosphate (Cerasorb) alone compared to autogenous bone grafts. J Oral Maxillofac Implants., v. 20, n. 3, p. 432-440. May/Jun. 2005.

Downloads

Publicado

2020-10-29

Edição

Seção

Artigos DACS